Debugging numpy (any C code of Python) using gdb

I created a tiny python script that executes some python code, that executes some C code: # contents of dbg_broadcast.py import numpy print list(numpy.broadcast([[1,2]],[[3],[4]])) Running in console: > gdb python GNU gdb (Ubuntu 7.7.1-0ubuntu5~14.04.2) 7.7.1 Copyright (C) 2014 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. .................. bla bla bla .................................................. # Adding breakpoint to function "arraymultiter_new" (example): (gdb) break arraymultiter_new # There is name completition by Tab....

April 4, 2016 · SergeM

TIL about PyPy

Building from source root using command pypy_src$ rpython/bin/rpython -Ojit pypy/goal/targetpypystandalone.py produces structure with obsolete pypy-c and libpypy-c.so in /tmp/usession-release-4.0.1-XXXX/build/pypy-nightly/bin/ Probably pypy compiler places there files integrated in the src distribution. To get fresh versions I had to use pypy-c and libpypy-c.so from sources root. UPDATE: Probably I was completely wrong. pypy/tool/release/package.py has an option for (not) stripping resulting binary file: “–nostrip”. By default it is enabled. Looks like it removed something unused from binaries....

January 8, 2016 · SergeM

Detector of flying objects in IR video

Implemented using python https://github.com/serge-m/object_detection_ir_video

September 12, 2015 · SergeM

Python logging best practices

Python has a great built-in logging library. It allows to avoid a lot of boilerplate code and provides great features. Here are some examples. Logging allows to set up a unified formatting for logs: 2023-10-03 12:57:22,377|classifier.py| 62|522130|MainThread|INFO|Classifying messages from ./messages.ndjson (images ./save_path)... 2023-10-03 12:57:22,378|classifier.py| 44|522130|MainThread|INFO|Start reading input messages from ./messages.ndjson 2023-10-03 12:57:22,378|classifier.py| 48|522130|MainThread|INFO|Loaded event {'id': 104162, 'date': '2023-09-27T07:12:08+00:00', 'entities': []} 2023-10-03 12:57:22,378|classifier.py| 48|522130|MainThread|INFO|Loaded event {'id': 58934, 'date': '2023-09-27T07:12:09+00:00', 'entities': [{'_': 'MessageEntityBold', 'offset': 92, 'length': 8}]} 2023-10-03 12:57:22,378|classifier....

April 21, 2015 · SergeM

Installing theano on windows

install Anaconda download Theano sources from git (install it using setup.py) Setup NVIDIA GPU Toolkit. I have installed version 6.5 Setup Visual Studio Community Edition 2013 Create config file .theanorc in c:\Users\X: [global] floatX = float32 device = gpu [nvcc] fastmath = True compiler_bindir=C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\cl.exe Without the line with path to cl.exe I got: nvcc fatal : Cannot find compiler 'cl.exe' in PATH ['nvcc', '-shared', '-O3', '-use_fast_math', '-Xlinker', '/DEBUG', '-D HAVE_ROUND', '-m64', '-Xcompiler', '-DCUDA_NDARRAY_CUH=f411a53ee0a470fbaad3b5c4a681ef64,-D NPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION,/Zi,/MD', '-Ic:\\anaconda\\theano\\theano\\sandbox\\cuda', '-Ic:\\anaconda\\lib\\site-packages\\numpy\\core\\include', '-Ic:\\anaconda\\include', '-o', 'C:\\Users\\X\\AppData\\Local\\Theano\\compiledir_Windows-7-6....

December 28, 2014 · SergeM

Writing simple optical flow in python. Part 3

Today, my imaginary readers, we improve our optical flow dramatically. Lets see, what our algorithm produces for images that have more than 1-pixel shifts. I0 I1 OF results: <img alt="OF results" src="" /> </td></tr> You can see, that the algorithm cannot deal with too large displacements. Even with multiple warps. Lets apply multiscale scheme now. We need to construct image pyramid: #from flow_huber_py import construct_image_pyramid def construct_image_pyramid(I, pyrlevels, pyrfactor): factor = 2....

December 21, 2014 · SergeM

Writing simple optical flow in python. Part 2

After fixing some errors, it seems my OF is working. [](https://www.blogger.com/blogger.g?blogID=636453477220885924" imageanchor=“1” style=“clear: right; float: right; margin-bottom: 1em; margin-left: 1em;) [](https://www.blogger.com/blogger.g?blogID=636453477220885924" imageanchor="1" style="clear: left; float: left; margin-bottom: 1em; margin-right: 1em;)Image I0Image I1 [](https://www.blogger.com/blogger.g?blogID=636453477220885924" imageanchor="1" style="clear: left; float: left; margin-bottom: 1em; margin-right: 1em;)first iteration OF 1st iteration of warped I1 Second Iteration OF Second iteration of warped I1 3 iteration Of 3rd iteration of warped I1 Last iteration Some strange results for another image pair:...

December 20, 2014 · SergeM

Writing simple optical flow in python

First of all we need a couple of test images: # import numpy from StringIO import StringIO I0 = numpy.loadtxt(StringIO(""" 0 0 0 0 0 0 0 0.5000 0 0 0 0 1.0000 0 0 0 0 0.5000 0 0 0 0 0 0 0""") ) I1 = numpy.loadtxt(StringIO(""" 0 0 0 0 0 0 0.5 0 0 0 0 1.0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 "...

November 30, 2014 · SergeM

Setting default parameters for imshow in pyplot

I find default visualization settings for images in matplotlib inconvenient. Usually I prefer to see images in grayscale color map and without smoothing. Thus I see actual data without distortions. Grayscale is easier to understand. 1 2 3 import matplotlib.pyplot as plt plt.rcParams['image.cmap'] = 'gray' plt.rcParams['image.interpolation'] = 'nearest' Compare default colors and interpolation: and after applying the settings:

November 23, 2014 · SergeM

Loading numpy array from string

Okay children, today we learn how to convert text to numpy matrix. Source is [here](http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html" target="_blank). # loading modules import numpy from StringIO import StringIO # Using StringIO as a file-like wrapper over text I0 = numpy.loadtxt(StringIO(""" 0 0 0 0 0 0 0 0.5000 0 0 0 0 1.0000 0 0 0 0 0.5000 0 0 0 1.0000 0 0 0 0 0.5000 0 0 0 0 0.5000 1.0000 0 0 0 0 0 0 0"...

November 17, 2014 · SergeM